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Computer Aided Analysis of Viscous Film Flow
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The steady, laminar flow of a Newtonian liquid along an inclined wavy wall is
studied in a two-dimensional numerical experiment using the Galerkin finite element
method. The dimensionless Navier—Stokes equations are solved in the whole range of
the laminar flow regime. Numerical predictions are compared with available experi-
mental data for very low Reynolds humbers. The emphasis in the discussion of results
is given in the presentation of free surface profiles, streamlines, velocity, and pressure
distributions along the free surface and the wall. The interaction of the dimension-
less numbers of the flow is studied, criteria for flow reversal are established, and a
resonance phenomenon at high Reynolds numbers is investigag@eks Academic Press
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1. INTRODUCTION

The flow of a viscous liquid film along a wavy inclined wall is a fundamental flui
mechanics problem. Applications of this flow range from the most common case of |
and mass transfer in heat exchangers and ordered packings [2, 3] up to more adv:
technological processes such as electrochemical plating, chemical etching, and che
conversion in liquid—gas catalytic reactions [4].

Despite the intriguing scientific interest in this problem and the usefulness of its solut
this flow is still not well understood in the whole range of laminar flow both in theory ai
experiment [2-5]. It is a complex non-linear flow due to the presence of the wavy wall,
free surface, and the influence of inertial and capillary forces.

The simultaneous appearence of these non-linearities render its theoretical solutiol
possible without the aid of computer aided numerical methods. So far the most thorc
solution to this problem in the limit situation of negligible inertial forces has been giv
by Pozrikidis [4] using the boundary integral method applicable to Stokes flow. Otl

1 To whom correspondence should be addressed at Verias 96, GR-57008 lonia, Greece. E-mail: nikol
eng.auth.gr.

372

0021-9991/99 $30.00
Copyright© 1999 by Academic Press
All rights of reproduction in any form reserved.



ANALYSIS OF VISCOUS FILM FLOW 373

theoretical solutions to this problem by Wang [6], Dassbtl. [7], and Shetty and Cerro
[2] use asymptotic methods limited to Stokes flow. There is a need though to study the f
further due to the existence of new results [8] and of theoretical calculations of a resone
phenomenon at high Reynolds numbers by Bontozoglou and Papapolymerou [3].

Tothe best of our knowledge, there are only two instances of experimental results pertil
tothe present problem by Shetty and Cerro[2] and Zhao and Cerro [5]. Cerro and co-wor
study the flow of highly viscous liquids along vertical periodic surfaces of five differel
geometries, where some abovementioned non-linearities influence the flow phenom
Their data cover a range of very low Reynolds numbers and describe the free-sur
topology at steady state.

A resonant interaction between an inclined periodic wavy wall and the free surfz
has been theoretically predicted by Bontozoglou and Papapolymerou [3] in the limit
sinusoidal wall corrugations of diminishing amplitude. This linear analysis leads to a fi
surface configuration with the same wavelength as the wall but different amplitude «
phase. The most interesting behavior appears for configurations with length around 2 |
Significant amplification of wall corrugations is calculated Rein the range 150-200
while a 180 degree jump in the phase shift indicates resonant interaction.

The present work has been motivated by the need to give a complete understandir
this problem from a numerical point of view. The Galerkin finite element method is us
that enables the tackling of all non-linearities of the problem, as shown by Malamate
and Papanastasiou [9] and Malamataris [10]. In these works, numerical results on 1
linear stability analysis, leveling rates of Newtonian fluids [9], and steady state film flc
[10, Chap. 5] along a perfectly plane vertical wall compare well with experimental da
The published computer code of these works [10, Appendix C] is now supplemented v
boundary conditions involving a spatially periodic wall of arbitrary shape. The flow has be
computed as a numerical experiment in a flow field, closely resembling the set-up of
actual laboratory experiment. Thus a realistic entrance section is included. A bonus of
approach—contrasted to imposing infinitely periodic boundary conditions—is additior
information on spatial development and the attainment to fully developed flow.

Three different tasks are performed in the present work. First, free surface shapes
streamline patterns are computed for IB&flows for which experimental results are avail-
able. The observed agreement validates our numerical procedure. Second, detailed ve
and pressure fields are calculated for flow conditions corresponding to the above exj
mental data. This information is not available experimentally and serves to improve our
derstanding for the flow. Third, flow characteristics (and, in particular, free-surface shay
are calculated at higher Reynolds numbers. In particular, the free-surface/wall reson:
[3] theoretically predicted for infinitely small corrugations is recovered and is extended
non-linear wall corrugations.

In the next sections, the problem statement is described along with the governing e«
tions for laminar flow and the appropriate boundary conditions (Section 2). The numeri
method is then briefly explained (Section 3), the numerical predictions are presented,
cussed, and compared with available experimental data (Section 4), and finally conclus
are drawn (Section 5).

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The computational domain for the viscous film flow along an inclined wavy wall i
shown in Fig. 1. A Newtonian fluid of constant density and viscosity flows in a slit ar
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FIG. 1. Computational domain of viscous film flow along an inclined wavy wall.

exits into the ambient air flowing along an inclined wavy wall. Depending on the geome
of the wall, the flow rate, and the properties of the fluid, different free surface shapes
formed and the flow phenomena vary. A complete description of the flow is given by
Navier—Stokes equations along with a kinematic equation of no-mass penetration a
the free surface (see Eq. (11)). The flow is laminar, isothermal, incompressible, and
dimensional. Steady state is considered as a first step in the analysis of this problen
the dimensionless governing equations are

V.u=0 1)

1 2 1
-Vu=-Vp+ —VUu+ —q0. 2
u u P e u rg ()

Equations (1) and (2) represent the conservation of mass (continuity equation) and
mentum, respectively. Here= (u, v) is the dimensionless velocity vector in the fluid, with
u andv its components in th&- andy-direction, respectively, angd= (i sine, —j cosw)
is the unit vector in the direction of gravity withandj the unit vectors in thex- and
y-direction, respectively. Term is the dimensionless pressuRe= p Q/u the Reynolds



ANALYSIS OF VISCOUS FILM FLOW 375

number withQ the flow rate per unit spap,the density ang the viscosity of the fluid, and
Fr =U?/gH is the Froude number, witinthe magnitude of gravityl the height of the slit,
andU = Q/H the mean velocity of the flow. The pressuréas been nondimensionalized
with the magnitudepU?2. Due to the nondimensionalization of the equations with the flo
rate Q and the height of the channidl the Froude numbé¥r is coupled with the Reynolds
numberRe

Re .
Fr = —y3sina.

3
Termy is the dimensionless Nusselt film-thickness [5] given by
1/ 3uQ \3
pgsina

The boundary conditions for this flow are:

at the entrance

u=-6yld-y (4)
v=0 ®)
top and bottom boundaries
in the slit
u= (6)
v=0 Q)
along wavy wall
u=0 (8)
v=0 9)
along free surface
n-T = Ca2Hcn (20)
n-u=0 (11)

at the outflow: free boundary condition.

Equations (4) and (5) impose parabolic slit flow at the entrance of the computatio
domain. The no-slip boundary condition has been imposed along the walls of the
main (Egs. (6)—(9)). Stress equilibrium is formulated along the free surface with Eq. (1
where Ca=o/pU?H is the capillary number, witly the surface tension of the fluid,
2H. = h,y/(1 + h2)¥2 the mean free surface curvature, ahg —pl + A (Vu+ (Vu)")
the dimensionless stress tensor of the fluid, Witie identity matrix. Equation (10) accounts
for the effects of surface tension along the free surface of the falling film. Equation (11
the condition of no-mass penetration across the free surface, which is solved simultanc
with the governing equations to yield the location of the free surface at each point of
computational domain. It should be noted that it is not necessary to prescribe an angle o
free surface at the exit of the slit (see Fig. 1), as at that point the location of the free surf
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coincides with the slit height, due to the no-slip boundary condition for the velocity vec
u (see Egs. (6)—(7)). Term= (—hyi + j)/1/1+ hZ is the unit vector normal to the free
surface, withh the location of the free surface ahd=dh/ax. The flow may be specified
by the following independent dimensionless groups: the Reynolds nuRdéne capillary
number,Ca, and the Nusselt film thicknesg,

The free boundary condition has been applied at the outflow in order to let the fluid le
the computational domain freely without any distortion of the flow in the interior. The ne
section briefly outlines how this idea [9, 11] is included in the formulation of the fini
element method by evaluating the surface integral of Eq. (15). It is beyond the scope of
work to get into the details of its implementation, which can be found elsewhere [10]
into its mathematical insight, which has, to a significant extent, been accomplished by
and Gresho [12; 13, p. 103], Heinrich and Vionnet [14], Griffiths [15], and Renardy [16

3. FINITE ELEMENT FORMULATION

The primary unknowns of the flow, which are the velocitigsndv; and the pressurg,
of the Navier—Stokes equations (1), (2) along with the unknown location of the free surf
h; in the kinematic equation (11), are expanded in terms of Galerkin basis functions a:

9
U=Zui¢‘, v:Zvid)i, hZZhid’ia p=
- i1

i=1 i=1

Py,

-

whereg' are biquadratic ang’ bilinear basis functions. This is a standard choice of bas
functions in Gakerkin finite element method analysis of flow problems as discusse
detail by Gresho and Sani [13, p. 459] and Peyret and Taylor [17, p. 218]. The govert
equations, weighted integrally with the basis functions, resulted in the following continu
RL, momentumRy,, and kinematicR , residuals:

RiC:/V-uwidV (12)
\%

i VU-V. (ol 42 ™) 4 Lols

Ry _/V [u Vu-V ( pl + Re(Vqu(Vu) )) + Frg}b dv (13)
Re = [wu =l ads (14)

By applying the divergence theorem, in order to decrease the order of differentiation, Eq.

reduces to
R — Vu+ Sg)e 4+ 7). vl | v
M—/V[(“' “+Frg>¢‘<“’+ae)' ‘4
_/n. (_pu+i<Vu+(Vu>T>>¢‘dS (15)
s Re

Since essential boundary conditions fioeindv are applied to all boundaries of the domair
except for the outflow and along the free surface, Eq. (15) will be replaced by Eqgs. (4)-
Along the free surface of the computational domain, the surface integrand of Eq. (15)
be replaced by Eq. (10). A novel point in the implementation is the evaluation of Eq. (
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along the outflow. Instead of imposing some sort of boundary conditions (e.g., period
we extend the range of the Galerkin expansion up to and including the outflow. As a res
the outflow conditions come as part of the solution and it is not necessary to presc
the angle at the free surface end. This allows description of the developing flow with
reflections caused by arbitrary boundary conditions. Details on the programming strat
and the actual implementation of the free boundary condition can be found elsewhere |

The residuals are evaluated numerically using nine-point Gaussian integration, wt
is a good compromise between accuracy and computational efficiency [13, p. 44]
shown by numerical experimentation. A system of non-linear algebraic equations rest
which is solved with the Newton—Raphson iterative method according to the sche
qMd =q™ —J-R(Q™) whereq" =[u1, v1, p1, h1..., Un, UN, P, hn]is the vector of
the unknowns and = 9R/aq is the Jacobian matrix of the residudswith respect to
the nodal unknowng. The banded matrix of the resulting linear equations is solved with
frontal solver [18] at each iteration. The computer runs have been performed at a DEC O
V3.2-Alpha 7000-610 AXP. A Oth order continuation has been used as an initial guess to
vance from one solution to another and the Newton iteration of all computer runs conver
quadratically in 4—6 iterations, independent of the mesh resolution. All numerical rest
are mesh independent as evidenced by the fact that increased mesh refinement influ
the accuracy of the solution less tharr{0

4. RESULTS AND DISCUSSION

The results of this work are presented in the following way: First numerical experimel
have been performed along a vertical wavy wall with an S- and C-shaped geometry
studied in the work of Zhao and Cerro [5], and under their experimental conditions. Co
parison of our results with their experiments encouraged us for further numerical run
higher Reynolds numbers, enabling the validation of the predictions of Bontozoglou &
Papapolymerou [3], which is discussed at the end of this section.

Numerical experiments of viscous film flow along a vertical S-shaped vifldlle geom-
etry of the S-shaped vertical wall consists of a combination of two semi-circles of rad
1.5875 mm. We used a computational mesh of 5 periods of S-shaped undulations follo
by a flat section of one wavelength. A representative converged mesh is depicted in Fi
for one period of wall undulations and the computational details of the runs are summari
in Table I. The height of the slitis 1 mm, in accordance with the flow distributor of th
experimental design of Zhao and Cerro [5, p. 499]. They performed the experiments of
flow configuration using silicon oil, glycerol A and B.

The complete free surface is shown in Fig. 3 for a representative run. Periodicity
attained almost after the first groove. Thus, the caution exercised by Zhao and Cerre
taking measurements after 10—15 grooves to assure fully developed flow [5, p. 498], s€
unnecessary in these numerical experiments. The situation, however, may differ at hi
Reynolds numbers. It is also shown that the wavelength of oscillation of the free surfac
identical to the wavelength of wall undulations accompanied by a slight phase shift, wh
has been observed both experimentally [5] and theoretically [4, 6].

Results of free surface shape are shown in Fig. 4 and are compared with the correspor
experimental data of Zhao and Cerro. The agreement is by inspection satisfactory. As
flow rate decreases in Fig. 4a the oscillation of the free surface increases and tends to fc



378 MALAMATARIS AND BONTOZOGLOU

77
gL L7

FIG. 2. Converged mesh in the S-set of numerical experiments for one period of wall undulations.

the shape of the wall curvature, as reported also by Pozrikidis [4, p. 284]. However,
action of capillary forces and the high value of the capillary number in the limit of ze
flow rate maintain a phase-shift in the periodicity of the free surface and prevent liquid 1
from exactly following the wavy wall profile.

Increasing surface tension acts to decrease the free surface curvature, as is evidk
comparison of Fig. 4a with Figs. 4b and 4c. A side-effect of this behavior is a mar}
difference in the draining process with decreasing flow rate. Silicon oil (Fig. 4a) dra
easily from the grooves forming a film of, more or less, uniform thickness. On the contr:
the higher surface tension of glycerol (Figs. 4b and 4c) leads to retension of fluid poc
at the wall troughs, which persist with diminishing flow rate.

Numerical results for the calculation of the film thickness curve and the free surface ci
are compared with the experimental data of Zhao and Cerro in Fig. 5. The agreeme
very satisfactory, as is the case in Fig. 6, where streamlines of an actual flow visualize
are compared to numerical computations for a representative experiment. We calculat
flow reversal at any magnitude of the flow rate for this set of experiments, in accorde
with the experimental observations of Zhao and Cerro [5, p. 507].
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TABLE |
Computational Details for the S-Set of Numerical Experiments

Number of elements 4280
Number of nodes 17,997
Number of unknowns 41,570
Number of grooves 5
Matrix front width 62
CPU per iteration 30s

x-coordinate of the nodes before the grooves

-3.,-25,-2,-15,-1,-0.75 -0.5, -0.4, —-0.3, -0.2, —0.1, —0.05, —0.025,0

x-coordinate of the nodes in the grooves (multiples of the radius of the grooydih af the period)

0.,0.05,0.1,0.15,0.2,0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1

x-coordinate of the nodes after the grooves

31.75,32, 3225, 325, 3275, 33, 33.25, 33,5, 33.75, 34,, 34.5, 35, 355, 36., 36.5, 37

y-coordinate of the nodes (multiples of the height of the free-surface)

0.,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1

Since finite element analysis yields a complete picture of the flow field, it is interesting
examine how other magnitudes of the flow vary for this experimental set-up, although th
is a lack of corresponding laboratory experimental data. In Figs. 7a and 7b, it is depic
how thex- andy-components of the velocity at the free surface vary along the free surfa
As the flow rate decreases, free surface amplitude increases and accordingly variation ¢
y-component of free surface velocity becomes more distinct in magnitudex-Vakcity
reaches its absolute minimum where the free surface is over the point of contact of the
semi-circles and the flow goes into the deep part of the groove. The absolute maximur
the v-velocity is reached where the free surface is over the half of the last semi-circle ¢
fluid leaves the deepest part of the groove.

Variation of theu-velocity as a function of cross-section of the flow is shown in Figs. 7¢, 7
for the two extreme flow rates of Fig. 4a. Thecomponent of free surface velocity reaches
its absolute minimum in the deep part of the groove, where—due to mass conservatic
the cross section of the flow is maximum. Maximum of theomponent of free surface

p. 1S

120 — free surface

0.60 |
0.00 wall
060 —|
120
-1.80 |
240
-3.00
360

y- coordinate

0 10 20 30 40
X- coordinate

FIG. 3. Display of periodicity in the S-set of numerical experiments. The arrows display the velocity vecto
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FIG. 4. Comparison of numerical versus laboratory experiments for the periodic free surface profile:
viscous film flow along a vertical S-shaped wall.
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FIG.5. Comparison of numerical versus laboratory experiments for the calculation of the free surface cL
and the film thickness curve of viscous film flow along a vertical S-shaped wall.

velocity is reached at the edges of each period of undulations, following the same reaso
of the law of continuity. As flow rate decreases, a local maximum inithelocity emerges,
where the free surface is over the point of contact of the two semi-circles, due to the suc
diminuation of flow cross-section at that point (see also Fig. 4). As in the case of the
component of free surface velocity, thiecomponent as well exhibits more pronouncec
variation in magnitude as flow rate decreases and free surface amplitude increases.
Finally, dimensionless mean velocity of the corresponding Nusselt flow [5], given
u* = (pgL3/31 Q)3 ranges from D048< u* < 4.5. In all cases, the component of free

FIG. 6. Comparison of numerical versus laboratory experiment for the streamlines of a representative ex
iment.
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FIG. 7. (a)and (b) Distribution of the- andv-component of the velocity of the free surface for the viscou
film flow along a vertical S-shaped wall. (c) and (d) Variation of theelocity as a function of the horizontal
cross-section of the film flow in the S-set of numerical experiments. (e) and (f) Distribution of the pressure a
the free surface and the wall for the viscous film flow along a vertical S-shaped wall.

surface velocity obtains values considerably higher tifgrwhich is in accordance with
the experimental observations of Zhao and Cerro [5, p. 508].

Pressure distribution along the free surface and the wall is depicted in Figs. 7e, 7f fol
S-set of numerical experiments. In all pressure profiles, the point of absolute maximur
the free surface pressure coincides with the absolute minimum of the velocity magnit
in accordance with Bernoulli’'s energy conservation law. Pressure along the wall rea
its absolute maximum in the region of the point of contact of the two semi-circles, wh
flow goes deep into the groove and the dynamic effect of maximnwelocity component
of the free surface (see Fig. 7b) increases the pressure along the wall. It is noted that
wall were completely flat there would be no difference in the pressure distribution alc
the free surface and the wall, since the flow is vertical and there is no hydrostatic pres
effect. The wavy nature of the flow though along with the action of capillary forces cal
a departure from that behavior.

Numerical experiments of viscous film flow along a vertical C-shaped wHile ge-
ometry of the C-shaped wall consists of a sequence of semi-circles of radius 1.5875
separated by a 0.2 mm flat section. For this series of experiments, Zhao and Cero [5] u
mixture of water—glycerin 1 : 2, silicon oil, and glycerol-B. Nine periods of wall undulatior
have been chosen for this set of numerical experiments, in order to achieve periodici
the free surface profile. This length of computational domain is comparable to five peri
of the previous set of numerical experiments (see Fig. 3), since the period of undulatior
the S-shaped wall is twice as long. A representative converged mesh is depicted in F
for one period of wall undulations and the computational details of the runs are summar
in Table II. Periodicity of the numerical experiments of this set is demonstrated in Fig
where free surface shape of a representative numerical experiment is shown in the v
computational domain. Again, the wavelength of oscillation coincides with the wavelen
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FIG. 8. Converged mesh in the C-set of numerical experiments for one period of wall undulations.

of wall undulations and the phase difference is due to the action of inertial and capill
forces, as already discussed in the previous set of numerical experiments.

Free surface profiles are again in agreement with the laboratory experiments, as st
in Fig. 10 and analogous agreement is also found in the comparison of the film thickr
curve and free surface curve (Fig. 11). The oscillations of the free surface profiles of
C-set of experiments is appreciably less than in the S-set although flow parameters a
the same order of magnitude. This is attributed to the different geometry of the C-sha
wall, which has a shallower groove and due to the wavelength of the undulation, whicl
half the wavelength of the S-shaped wall.

An interesting new feature concerns the formation of a recirculation region (stagnat
pocket) for the experiments of Fig. 10a (see Fig. 12), which correspond to the highest f
rates, as also observed by Zhao and Cerro [5, p. 508]. The strange patterns around the ct
of Fig. 12 represent small recirculations, that are not adequately described, because ¢
highly distorted finite element mesh at that region as shown in Fig. 8. However, the eff
is local and in no way affects the convergence and accuracy of the solution. A well kno

fact for recirculation zones [4, 21, 22] is the change of sign in the shear stress distribu



384 MALAMATARIS AND BONTOZOGLOU

TABLE Il
Computational Details for the C-Set of Numerical Experiments

Number of elements 6072
Number of nodes 25,325
Number of unknowns 58,254
Matrix front width 72
CPU per iteration 50s

x-coordinate of the nodes before the grooves

-3.,-25,-2,-15,-1,-0.75 -05, -0.4, -0.3, 0.2, —-0.1, —0.05, —0.025 0

x-coordinate of the nodes in the grooves (multiples of the radius in the groove)

0.,0.01, 0.02,0.03,0.04,0.05,0.1,0.125 0.15,0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75,
0.8,0.85,0.9,0.951.,,1.051.1,1.151.2,1.25 1.3,1.35,1.4,145,15,155, 1.6, 1.65,1.7,1.75,1.8, 1.85,
1.9,1.9251.95,1.96,1.97,1.98,1.99, 2

x-coordinate of the nodes in the flat section of the first groove

3.175 3.225 3.275,3.325, 3.375
x-coordinate of the nodes after the grooves

30.375 30.5, 30.75, 31, 31.25, 315, 31.75, 32

y-coordinate of the nodes (multiples of the height of the free-surface)

0.,0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1

along the wall, where reattachment of the flow occurs. For these runs, the distributio
shear stress and vorticity has been calculated and shown in Fig. 13. Both shear stres
vorticity change sign almost at the point of reattachment of the flow. At all lower flow rat
no flow reversal was computed, in agreement with the experimental observations of -
and Cerro.

There is some arguing as to how the recirculation region is generated. Zhao and C
state that it is the value of the flow rate, while Pozrikidis [4, p. 290] adds that, apart fr
a critical value in the flow rate, flow reversal also occurs with increasing film thickne
In order to clarify this phenomenon, we performed numerical experiments at the f
conditions of the run of Fig. 10b, by changing only one dimensionless parameter at a t
Results for the streamlines are shown in Fig. 14. In all three cases (Figcd 4l ; Fig. 14c,
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FIG. 9. Display of periodicity in the C-set of numerical experiments. The arrows display the velocity vectc
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FIG. 10. Comparison of numerical versus laboratory experiments for the periodic free surface profiles
viscous film flow along a vertical C-shaped wall.
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FIG.11. Comparison of numerical versus laboratory experiments for the calculation of the free surface ¢
and the film thickness curve of viscous film flow along a vertical C-shaped wall.

y =0.4; Fig. 14d,Re= 1.5) the recirculation zone disappears. A common characteristic
allthese runs is the supression of flow reversal, due to decreasing film thickness. Indee
arguments of Zhao, Cerro, and Pozrikidis are verified, as a decrease in the flow rate ar
dimensionless Nusselt film thickness inhibits flow reversal. However, an additional ce
of inhibition of flow recirculation is the decrease of surface tension. Apart from this n
finding, Fig. 14 displays the different influence of each dimensionless number in the fl
Reynolds number influences the phase shift of the free surface, capillary number af
its shape, and dimensionless Nusselt film thickness reduces its thickness. Finally, vel
and pressure distributions for these runs follow the same pattern as in the previous s
experiments and are not presented.

FIG.12. Calculated streamlines for numerical experiments of the highest flow rates of the C-set of experim
The arrows display the velocity vector.
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FIG. 13. Distribution of shear stress and vorticity for numerical experiments of Fig. 12.

Numerical experiments of viscous film flow along an inclined sinusoidally shaped wal
high Reynolds numbersThe satisfactory agreement of numerical experiments with exis
ing laboratory data, which yield a complete picture of the flow phenomena supplement
the laboratory experiments, encourages application of the computer code of this wor
higher Reynolds numbers. The goal is to validate and extend recent linear theoretical re
by Bontozoglou and Papapolymerou [3], who have predicted a resonance phenomenon
free surface for water flow along an inclined wall with sinusoidal infinitesimal indentatiol
of lengthL around 2 mm.

Numerical experiments have been carried out in the whole range of laminar flow anc
Fig. 15 results are shown for the case of infinitesimal wall undulatiars@01). Up to
Re=50 the free surface is almost a straight line without any appreciable oscillations.
the Reynolds number increases the oscillations increase and dreuniB0 we observe
the predicted resonance [3]. Maximum amplification of the oscillation at the free surfac
roughly equal to twice the oscillation of the wall, in agreement with the linear limit calculate
by Bontozoglou and Papapolymerou [3]. At even higher Reynolds numbers, free sur
oscillations are shifted closer to the entrance with diminishing amplitude until they gradue
fade atRe=400. Free surface resonance is prevent&kat 180 by high value of capillary
number and aRe>>> 210, by the high value of dimensionless Nusselt film thickness.

In Figs. 16-17, it is shown how the oscillations of the free surface change for wall inde
dations of finite amplitudea(= 0.1). In this case oscillations in the region 18®Re< 210
are intensified and maximum amplitude of free surface oscillations is 1.5 times higher tl
wall amplitude. At Reynolds numbers outside this “resonant” region, free surface os
lations are also enhanced, in the same fashion though as in the case of infinitesimal
undulations.

Two interesting non-linear phenomena are observed for the non-linear case: Maxir
amplification occurs aroune=210. It, thus, seems that there is a shift of resonanc
to higher Reynolds numbers with increasing wall amplitude. The dominant free-surf
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Qi)

FIG. 14. Calculated streamlines of hypothetical numerical experiments around the flow conditions of the
of Fig. 10b. (a) exp. 2C, (b) exp. 2C witba= 1, (c) exp. 2C withy = 0.4, and (d) exp. 2C witfRe=1.5.
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FIG.15. Free surface profiles of a film flowing along an inclined wall with infinitesimal undulateba<).01.

wavelength equals that of the wall in all cases tested. Howegeihlaarmonienodulation
seems to develop when approaching the resonance region from below. This is par
larly evident forRe= 100 (Fig. 16a) and corresponds to wavelength twice that of the we
disturbance. At higher Reynolds numbers, free-surface waves develop blunt crests
a superharmonianodulation seems to appear for the highest wall amplitude (Fig. 17
Re=300). Both these phenomena disappear at the “resonant” region, which is domin:
by the fundamental solution.

Allresults of the present work are for steady (developing or fully developed) flow. Stabili
analysis of the solutions, in particular around resorR&tcould be investigated next. It
would be interesting if the present code were extended to incorporate spatially develo
disturbances, thus enabling numerical experiments of convective instabilities.

5. CONCLUSIONS

In this work, a complete description of viscous flow along an inclined wall with infinites
imal and finite wall indentations is given in the whole range of laminar regime, taking in
account all parameters that influence flow phenomena. At low Reynolds numbers, res
of numerical experiments compare well with laboratory data at two different geometries
wall undulations.

Oscillations of the free surface increase, depending on the geometry of wall and
value of liquid surface tension. The wavelength of free surface oscillations is the sam
the wavelength of the wall undulations and there is always a phase shift, due to the actic
inertial and capillary forces. Velocity distributions at the free surface exhibit extreme valt
at points, where the size of the cross section between free surface and wall is also extr
Correspondingly, pressure distributions along the free surface exhibit extreme values ir
region of extreme values of the vertical component of free surface velocity.



390 MALAMATARIS AND BONTOZOGLOU

1.00 |-

(a) Re =100

0.75

free surface

wall

0.00 |-

1.00:-
\(b) Re = 180

075 |
free surface
0.50
0.25 |
0.00 k- wall
0 10 20 30 40 50 60 70

FIG. 16. Free surface profiles of a film flowing along an inclined wall with finite undulatiens,0.1,
(a) Re=100, (b)Re=180.

Among the dimensionless parameters of the flow, free surface shape is mainly influe
by the capillary number, its phase shift relative to the wall undulations by the Reync
number, and film thickness by the dimensionless Nusselt film thickness. The distribu
of shear stress and vorticity along the wall change sign at points of flow reversal.

Wall/free surface resonance is computed to occ&estround 200 for short wall inden-
tations and its non-linear behavior is investigated. Amplification factor decreases with \
amplitude. Subharmonic and superharmonic modulations are observed when approa
resonanRefrom below and above, respectively.

All numerical experiments of this work have been designed with the same concer
actual laboratory experiments, using the free outflow boundary condition that enable:
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FIG. 17. Free surface profiles of a film flowing along an inclined wall with finite undulatiens,0.1,
(a) Re= 210, (b)Re= 300.

numerical analyst to construct a real computational domain. This is contrasted with trz
tional approaches to this flow problem involving the use of periodic boundary conditic
at the in- and outflow of a computational domain of one period of oscillations, thus faili
to provide information as to where the flow becomes fully developed and how the fl
disturbance developes at high Reynolds numbers in the whole domain. The results
presently limited to steady state, which seems a useful first step in the analysis of this f
The extent to which the steady state solution is a realistic approximation is not yet knc
experimentally. Stability analysis to the steady flow is a natural extension of the pres
work and will be considered next.
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